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This paper proposes a new energy minimization method called multiplicative intrinsic component
optimization (MICO) for joint bias field estimation and segmentation of magnetic resonance (MR) images.
The proposed method takes full advantage of the decomposition of MR images into two multiplicative
components, namely, the true image that characterizes a physical property of the tissues and the bias field
that accounts for the intensity inhomogeneity, and their respective spatial properties. Bias field estimation
and tissue segmentation are simultaneously achieved by an energy minimization process aimed to
optimize the estimates of the two multiplicative components of an MR image. The bias field is iteratively
optimized by using efficient matrix computations, which are verified to be numerically stable by matrix
analysis. More importantly, the energy in our formulation is convex in each of its variables, which leads to
the robustness of the proposed energy minimization algorithm. The MICO formulation can be naturally
extended to 3D/4D tissue segmentation with spatial/sptatiotemporal regularization. Quantitative
evaluations and comparisons with some popular softwares have demonstrated superior performance of
MICO in terms of robustness and accuracy.
© 2014 Published by Elsevier Inc.
1. Introduction

Image segmentation is a fundamental problem in medical image
computing. In magnetic resonance imaging (MRI), segmentation is
challenged by an inherent artifact, called intensity inhomogeneity,
which manifests itself as slow intensity variations in the same tissue
over the image domain. Intensity inhomogeneity in MRI may be
attributed to a number of factors, including B1 and B0 field
inhomogeneities and patient-specific interactions. Due to the intensity
inhomogeneity, there are overlaps between the ranges of the
intensities of different tissues, which often causes misclassification of
tissues. Other image analysis algorithms, such as image registration,
can also bemisled by intensity inhomogeneities. Therefore, it is often a
mandatory step to remove the intensity inhomogeneity through a
procedure called bias field correction before performing quantitative
analysis of MRI data. Bias field correction is usually performed by
estimating the bias field that accounts for the intensity inhomogeneity
in the MR image and then dividing the image by the estimated bias
field to generate a bias field corrected image.
Traditional segmentation algorithms, such as K-means algorithm,
often fail in the presence of intensity inhomogeneities in the images. To
apply these algorithms, one has to perform bias field correction in a
separate preprocessing step to remove the intensity inhomogeneity.
Some advanced image segmentation algorithms have an internal
mechanism to handle intensity inhomogeneities, and therefore can be
directly used for segmentationwithout the need for bias field correction
in a separate preprocessing step. Thesemethods typically interleave bias
field estimation and image segmentation in an iterative process.

In [1], Wells et al. developed an approach based on an
expectation-maximization (EM) algorithm for interleaved bias field
estimation and segmentation. This method was later improved by
Guillemaud and Brady in [2]. However, these EM based methods
require good initialization for either the bias field or for the
classification estimate [3]. They typically require manual selections
of representative points for each tissue class to perform initialization.
Such initializations are subjective and often irreproducible [4].
Moreover, the final result of bias field correction and segmentation
are sensitive to the specific choices of initial conditions [5].

In [6], Pham and Prince proposed an energy minimization
approach for segmentation and bias field estimation in which a
fuzzy c-means (FCM) algorithm was used for segmentation. Their
method, called adaptive FCM (AFCM), is an extension of FCM by
introducing a bias field as a factor in the cluster centers. In their
energy function, a smoothing term was introduced to ensure the



914 C. Li et al. / Magnetic Resonance Imaging 32 (2014) 913–923
smoothness of the bias field. The coefficient of the smoothing term is,
however, sometimes difficult to adjust [5], which limits the utility of
the algorithm. In a later paper [7], Pham extended AFCM to an
improved formulation called FANTASM by adding a spatial regular-
ization mechanism on the tissue membership functions. The spatial
regularization overcomes the effect of the noise, but FANTASM still
has the same problem associated with the smoothing term for the
bias field as in AFCM.

Bias field correction itself is an important medical image
processing task. Many bias field correction algorithms have been
proposed in the past two decades. The existing bias correction
methods can be broadly categorized into two classes: prospective
methods [8–14] and retrospective methods [1,15–17,6,4,3,18–20].
Prospective methods try to avoid intensity inhomogeneity in the
acquisition process by using special hardware or specific sequences.
These methods are able to correct some of the intensity inhomo-
geneities caused by the MR scanner, but fail to handle the
inhomogeneities that are patient dependant, which makes them
of limited value for in practical applications [21]. In contrast to the
prospective methods, retrospective methods rely exclusively on the
information within the acquired image and thus can be applied to
remove the intensity inhomogeneities caused by patient dependant
effects. A recent review of bias correction methods can be found
in [5].

One of the earliest retrospective methods for bias field
correction is the homomorphic filtering [15]. This method assumes
that intensity inhomogeneity is a low spatial frequency signal that
can be suppressed by high pass filtering. However, the imaged
objects themselves usually contain low frequencies as well and, as
a result, filtering methods often fail to produce satisfactory bias
field corrections [5]. Dawant et al. [16] proposed a method that
estimates the inhomogeneity field by fitting splines to the
intensities of selected points. Their method relies on manually
selecting reference points inside white matter. In [17], an iterative
method, called N3, based on intensity histograms was proposed for
bias field correction. It aims to derive the smooth bias field that
optimally sharpens the intensity histogram of the image. In [22],
the implementation of the N3 algorithm was improved by using a
faster and more robust B-spline approximation to compute the
bias field.

In this paper, we propose a new approach for bias field
estimation and tissue segmentation in an energy minimization
framework. The proposed method jointly performs bias field
estimation and the tissue membership functions in an energy
minimization process to optimize two multiplicative intrinsic
components of an MR image, the bias field that accounts for the
intensity inhomogeneity and the true image that characterizes a
physical property of the tissues. The spatial properties of these
two components are fully reflected in their representations and
the proposed energy minimization formulation. Our method,
which we call multiplicative intrinsic component optimization
(MICO), is robust due to the convexity of the energy function in
each of its variables. The proposed MICO formulation can be
naturally extended to 3D/4D segmentation with spatial/spatio-
temporal regularization.
2. Multiplicative intrinsic component optimization

In this section, we present the formulation of MICO for bias field
estimation and tissue segmentation based on the decomposition of
an MR image into two multiplicative components. We propose an
energy minimization approach to optimize these two multiplicative
components, which leads to the MICO algorithm for joint bias field
estimation and tissue segmentation.
2.1. Decomposition of MR images into multiplicative
intrinsic components

From the formation of MR images, it has been generally accepted
that an MR image I can be modeled as

I xð Þ ¼ b xð Þ J xð Þ þ n xð Þ; ð1Þ

where I(x) is the intensity of the observed image at voxel x, J(x) is the
true image, b(x) is the bias field that accounts for the intensity
inhomogeneity in the observed image, and n(x) is additive noise
with zero-mean. The bias field b is assumed to be smoothly varying.
The true image J characterizes a physical property of the tissues
being imaged, which ideally take a specific value for the voxels
within the same type of tissue. Therefore, we assume that J(x) is
approximately a constant ci for all point x in the i-th tissue. The above
assumptions have been generally accepted in the literature [1,4,6].

In this paper, we consider (1) as a decomposition of theMR image
I into twomultiplicative components b and J and additive zero-mean
noise n. From this perspective, we formulate bias field estimation
and tissue segmentation as an energy minimization problem of
seeking optimal decomposition of the image I into twomultiplicative
components b and J. We refer to the bias field b and the true image J
as intrinsic components of the observedMR image I. In this paper, we
view an image I as a function I: Ω → ℜ on a continuous domain Ω.

In the context of computer vision, an observed image of a scene
has a similar decomposition as in (1). An observed image I can be
decomposed as I = RS with two multiplicative components: the
reflectance image R and the illumination image S. In [23], Barrow and
Tenenbaum proposed using the terms intrinsic images to represent
these two multiplicative components. Estimation of the intrinsic
images from an observed scene image has been an important
problem in computer vision. Numerous methods have been
proposed to estimate the intrinsic images from a scene image
based on different assumptions on the two intrinsic images [24–26].

In this paper, we consider the bias field b and the true image J as
the multiplicative intrinsic components of an observed MR image. We
propose a novel method to estimate these two components from an
observedMR image.We note that themethod proposed in this paper
is different from those methods for estimating reflectance and
illumination images in computer vision. In fact, the estimation of
intrinsic images is an ill-posed problem due to the lack of sufficient
knowledge about the unknown intrinsic images R and S.

Estimation of the multiplicative components b and J of the
observed MR image I is an underdetermined or ill-posed problem
if no knowledge about them is used. To make the problem
solvable, we have to use some knowledge about the bias field b
and true image J. In this paper, we propose a method that uses the
basic properties of the true image and bias field, namely, the
piecewise constant property of the true image J and the smoothly
varying property of the bias field b. The decomposition of the MR
image I into two multiplicative intrinsic components b and J with
their respective spatial properties are fully exploited in the
formulation of our method.

2.2. Representations of multiplicative intrinsic components

To effectively use the properties of the bias field b and true image
J, we need appropriate mathematical representation and description
of the bias field and true image. In our method, the bias field is
represented by a linear combination of a given set of smooth basis
functions g1, ⋯, gM, which ensures the smoothly varying property of
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the bias field. Theoretically, a function can be approximated by a
linear combination of a number of basis functions up to arbitrary
accuracy [27], given a sufficiently large number M of the basis
functions. In the applications of MICO to 1.5 T and 3 T MRI data, we
use 20 polynomials of the first three degrees as the basis functions.

The estimation of the bias field is performed by finding the
optimal coefficients w1, ⋯, wM in the linear combination b(x) =
∑ k = 1

M wkgk. We represent the coefficients w1, ⋯, wM by a column
vector w = (w1, ⋯, wM)T, where (·)T is the transpose operator. The
basis functions g1(x), ⋯, gM(x) are represented by a column vector
valued function G(x) = (g1(x), ⋯, gM(x))T. Thus, the bias field b(x)
can be expressed in the following vector form

b xð Þ ¼ wTG xð Þ: ð2Þ

The above vector representation will be used in our proposed
energy minimization method for bias field estimation, which allows
us to use efficient vector and matrix computations to compute the
optimal bias field derived from the energy minimization problem, as
will be described in Section 2.4.

The piecewise approximately constant property of the true image
J can be statedmore specifically as follows. We assume that there are
N types of tissues in the image domain Ω. The true image J(x) is
approximately a constant ci for x in the i-th tissue. We denote by Ωi

the regionwhere the i-th tissue is located. Each region (tissue)Ωi can
be represented by its membership function ui. In the ideal case where
every voxel contains only one type of tissue, the membership
function ui is a binary membership function, with ui(x) = 1 for x ∈
Ωi and ui(x) = 0 for x ∉ Ωi. In reality, one voxel may contain more
than one type of tissues due to the partial volume effect, especially at
the interface between neighboring tissues. In this case, the N tissues
can be represented by fuzzy membership functions ui(x) that take
values between 0 and 1 and satisfy ∑ i = 1

N ui(x) = 1. The value of
the fuzzy membership function ui(x) can be interpreted as the
percentage of the i-th tissue within the voxel x. Such membership
functions u1, ⋯, uN can be represented by a column vector valued
function u = (u1, ⋯, uN)T, where T is the transpose operator. We
denote by U the space of all such vector valued functions, i.e.

U≜ u ¼ u1; ⋯;uNð ÞT : 0≤ui xð Þ≤1; i ¼ 1; ⋯;N; and
XN
i¼1

ui xð Þ ¼ 1; for all x∈Ω

)(

ð3Þ

Given the membership functions ui and constants ci, the true
image J can be approximated by

J xð Þ ¼
XN
i¼1

ciui xð Þ: ð4Þ

In the case that the membership functions ui are binary functions,
the function in (4) is a piecewise constant function, with J(x) = ci for
x ∈ Ωi = {x: ui(x) = 1}. The binary membership functions u1, ⋯, uN
represent a hard segmentation result, and the corresponding
regions Ω1, ⋯, ΩN form a partition of the image domain Ω, such
that ∪ i = 1

N Ωi = Ω and Ωi ∩ Ωj = Ø. More generally, fuzzy mem-
bership functions u1, ⋯, uN with values between 0 and 1 represent a
soft segmentation result.

Based on the image model (1), we propose an energy minimi-
zation method for simultaneous bias field estimation and tissue
segmentation. The result of tissue segmentation is given by the
membership function u = (u1, ⋯, uN). The estimated bias field b is
used to generate the bias field corrected image, which is computed
as I/b.
2.3. Energy formulation for multiplicative intrinsic
component optimization

We propose an energy minimization formulation for bias field
estimation and tissue segmentation based on the image model (1)
and the intrinsic properties of the bias field and the true image as
described in Section 2.1. In view of the image models (1), we
consider the problem of finding the multiplicative intrinsic compo-
nents b and J of an observed MR image I such that the following
energy is minimized

F b; Jð Þ ¼
Z

Ω
jI xð Þ−b xð Þ J xð Þj2dx: ð5Þ

Obviously, minimization of this energy is an ill-posed problem if
there are no constraints on the variables b and J. In fact, without any
constraint, the energy F(b, J) is minimized by any non-zero function b
and J = I/b. To make the problem solvable, we need to confine the
search spaces of b and J by exploiting some knowledge about the
unknowns b and J. In fact, the properties of the bias field b and the true
image J described in Section 2.1 are the knowledge that can be used to
confine the search spaces of b and J to specific subspaces that reflect
these properties.

Using the property that the true image J is piecewise approximately
constant, we can confine the search space of the true image J to the
subspace of piecewise constant functions J(x) = ∑ i = 1

N ciui(x) as in
(4)with binarymembership functionsu1, ⋯, uN. On the other hand, the
search space of the bias field b is confined to the subspace of all the
functions in the form b(x) = wTG(x) as in (2). With these represen-
tations of the true image J and bias field b, the energy F(b, J) can be
expressed in terms of three variables, u = (u1, ⋯, uN)T, c =
(c1, ⋯, cN)T, and w = (w1, ⋯, wM)T, namely,

F b; Jð Þ ¼ F u; c;wð Þ ¼
Z

Ω
I xð Þ−wTG xð Þ

XN
i¼1

ciui xð Þj2dx;
����� ð6Þ

Thus, the optimization of b and J can be achieved by minimizing
the energy F with respect to u, c, and w.

Since ui is the binarymembership function of the regionΩi, with ui
(x) = 1 for x∈Ωi andui(x) = 0 for x∉Ωi,wehave∑ i = 1

N ciui(x) = ci
for x ∈ Ωi. Therefore, the energy F can be expressed as:

F u; c;wð Þ ¼
Z

Ω
jI xð Þ−wTG xð Þ

XN
i¼1

ciui xð Þj2dx
¼
XN
i¼1

Z
Ωi

I xð Þ−wTG xð Þci
��� ���2dx

¼
XN
i¼1

Z
Ω
I xð Þ−wTG xð Þci
��� ���2ui xð Þdx

ð7Þ

By exchanging the order of summation and integration, we get

F u; c;wð Þ ¼
Z

Ω

XN
i¼1

I xð Þ−wTG xð Þci
��� ���2ui xð Þdx: ð8Þ

This expression of the energy F allows us to derive an effective
energy minimization scheme described in Section 2.4. As a result
of minimizing the energy F(u, c, w), we obtain the optimal
membership function û¼ û1; ⋯; ûNÞT

�
as the segmentation result,

and the optimal vector ŵ, from which the estimated bias field is
computed by b xð Þ ¼ ŵTG xð Þ.

As will be shown in Section 2.4, the optimal membership
functions u1, ⋯, uN that minimize the energy defined in (8) are
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binary functions, with values being either 0 or 1, which give a hard
segmentation result. In many applications, it is preferable to have
fuzzy (or soft) segmentation results, which are given by fuzzy
membership functions that take values between 0 and 1 as in the
fuzzy C-means (FCM) clustering method. To achieve fuzzy segmen-
tation, we modify the energy function F in (8) by introducing a
fuzzifier q ≥ 1 to define the following energy:

Fq u; c;wð Þ ¼
Z

Ω

XN
i¼1

I xð Þ−wTG xð Þci
��� ���2uq

i xð Þdx: ð9Þ

For the case q N 1, the optimal membership functions that
minimize the energy Fq (u, c, w) are fuzzy membership functions,
which take value between 0 and 1.

Our method performs image segmentation and bias field
estimation by minimizing the energy F(u, c, w) in Eq. (8) or Fq(u,
c,w) in Eq. (9), subject to the constraints u ∈U. A desirable property
of this energy Fq(u, c, w) is that it is convex in each variable, u, c, or
w. This property ensures that the energy Fq(u, c, w) has a unique
minimum point in each of its variables.

2.4. Energy minimization

The energy minimization can be achieved by alternately
minimizing Fq(u, c, w) with respect to each of its variables given
the other two fixed. The minimization of Fq(u, c, w) with respect to
each of its variables is described below.

2.4.1. Optimization of c
For fixed w and u = (u1, ⋯, uN)T, the energy F(u, c, w)

is minimized with respect to the variable c. It is easy to show that
F(u, c, w) is minimized by c ¼ ĉ ¼ ĉ1; ⋯; ĉNÞT

�
with

ĉi ¼

Z
Ω
I xð Þb xð Þuq

i xð ÞdxZ
Ω
b2 xð Þuq

i xð Þdx
; i ¼ 1; ⋯;N: ð10Þ

2.4.2. Optimization of w and bias field estimation
For fixed c and u, we minimize the energy F(u, c,w) with respect

to the variablew. This can be achieved by solving the equation ∂ F
∂w ¼ 0.

It is easy to show that

∂F
∂w ¼ −2v þ 2Aw

where v is an M-dimensional column vector given by

v ¼
Z

Ω
G xð ÞI xð Þ

XN
i¼1

ciu
q
i xð Þ

!
dx;

 
ð11Þ

where A is an M × M matrix

A ¼
Z

Ω
G xð ÞGT xð Þ

XN
i¼1

c2i u
q
i xð Þ

!
dx:

 
ð12Þ

The equation ∂F
∂w ¼ 0 can be expressed as a linear equation:

Aw ¼ v ð13Þ

Given the solution of this equation, ŵ¼ A−1v , we compute the
estimated bias field as b̂ xð Þ ¼ ŵTG xð Þ.

It can be shown that thematrix A is non-singular (see Section 2.5).
Therefore, the linear equation ∂F

∂w ¼ −2v þ 2Aw ¼ 0 has a unique
solution ŵ¼ A−1v . From (12), the vector ŵ can be explicitly
expressed as

ŵ¼
Z

Ω
G xð ÞGT xð Þ

XN
i¼1

c2i u
q
i xð Þ

!
dx

 !−1Z
Ω
G xð ÞI xð Þ

XN
i¼1

ciu
q
i xð Þ

!
dx

  

ð14Þ

With the optimal vector ŵ given by (14), the estimated bias field
is computed by

b̂ xð Þ ¼ ŵTG xð Þ ð15Þ

In Section 2.5, we will prove the non-singularity of the matrix A
and the numerical stability of the above computation for solving the
linear system (13), which are two important issues in the
implementation of our method.

2.4.3. Optimization of u
We first consider the case of q N 1. For fixed c andw, weminimize

the energy F(u, c, w) subject to the constraint that u ∈ U. It can be
shown that F(u, c, w) is minimized at u ¼ û¼ û1; ⋯; ûNÞT

�
, given by

ûi xð Þ ¼ δi xð Þð Þ 1
1−qXN

j¼1
δ j xð Þ
� � 1

1−q
; i ¼ 1; ⋯;N; ð16Þ

where

δi xð Þ ¼jI xð Þ−wTG xð Þcij2: ð17Þ

For q = 1, it can be shown that the minimizer û¼ ðû1; ⋯; ûNÞT is
given by

ûi xð Þ ¼ 1; i ¼ imin xð Þ;
0; i≠imin xð Þ:

�
ð18Þ

where

imin xð Þ ¼ argmin
i

δi I xð Þð Þf g:

2.5. Matrix analysis for numerical stability

The computation for the bias field estimation includes the
computation of the vector v in (11), the matrix A in (12), and the
inverse matrix A−1 in (14). The matrix A is anM × Mmatrix, withM
being the number of basis functions. In this paper, we use M = 20
basis functions, and therefore the matrix A is an 20 × 20 matrix. It
will be shown that the matrix A is non-singular, which ensures that
the inverse matrix A-1 exists and the Eq. (13) has a unique solution.
Furthermore, we will also show that the numerical computation of
the inverse matrix A−1 is stable.

The non-singularity of matrix A given in Eq. (12) is verified as

follows. We first define hm xð Þ≜gm xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1c
2
i u

q
i xð Þ

q
. Thus, the (m, k)

entry of the matrix A can be expressed as the inner product of hm and
hk given by

hm;hkh i ¼
Z

Ω
hm xð Þhk xð Þdx:

Therefore, the matrix A is the Gramian matrix of h1, ⋯, hM. By
linear algebra [28], the Gramian matrix of h1, ⋯, hM is non-singular if
and only if they are linearly independent. It is easy to see that the
above defined functions h1, ⋯, hM are linearly independent, which
implies the non-singularity of A.
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Numerical stability is an important issue in solving the Eq. (13).
The numerical stability of solving the Eq. (13) is characterized by the
condition number of the matrix A [29]. The condition number of a
positive-definite matrix A is given by

κ Að Þ ¼ λmax Að Þ=λmin Að Þ;

where λmin(A) and λmax(A) are the minimal and maximal eigen-
values of matrix A, respectively. If the conditions number κ(A) is very
large, small variations in the matrix A or the vector v, which likely
occur due to the noise in the image and accumulating intermediate
rounding errors, can cause very large variation of the solution bw

∧
to

the Eq. (13). Therefore, to ensure the robustness of the computation
of the bias field, it is critical to ensure that the condition number κ(A)
is not large, which is verified as below.

The followingmatrix analysis is based on the orthogonality of the
basis functions, namely,

Z
Ω
gm xð Þgk xð Þdx ¼ δmk; ð19Þ

where δmk = 0 for m ≠ k and δmk = 1 for m = k.
For the above defined matrix A in Eq. (12) with the basis

functions g1, ⋯, gM satisfying the orthogonality condition in Eq. (19),
it can be shown that

0bmin
i

c2i
n o

≤λmin Að Þ≤λmax Að Þ≤ max
i

c2i
n o

Therefore, the condition number of A is bounded by

κ Að Þ≤
max

i
c2i
n o

min
i

c2i
n o

:
ð20Þ

For example, if maxi{ci} = 250 and mini{ci} = 50, by the
inequality (20), we have κ Að Þ≤ 2502

502
¼ 25. In the applications of our

method to real MRI data, we have found that the condition numbers
of the matrix A are at this level, which is small enough to ensure the
numerical stability of the inversion operation.

2.6. Implementation

From Section 2.4, we summarize the scheme of minimization of
the energy Fq(u, c, w) for q ≥ 1 as the following iteration process:

• Step 1. Initialize u and c;
• Step 2. Update b as b̂ in (15).
• Step 3. Update c as ĉ in (10).
• Step 4. Update u as û in (16) for the case q N 1 or (18) for the case
q = 1;

• Step 5. Check convergence criterion. If convergence has been
reached or the iteration number exceeds a prescribed maximum
number, stop the iteration, otherwise, go to step 2.

In the above described iteration process, each of the three
variables is updated with the other two variables computed in the
previous iteration. Therefore, we only need to initialize two of the
three variables, such asu and c in step 1 in the above iterationprocess.
The convergence criterion used in step 5 is |c(n) − c(n − 1)| b ε,
where c(n) is the vector c updated in step 3 at the n-th iteration, and ε
is set to 0.001.

To demonstrate the robustness of ourmethod to initialization, we
applied it to a synthetic image in Fig. 1(a), with three different
initializations of the membership functions u1, ⋯, uN and the
constants c1, ⋯, cN. The initial membership function u = (u1, ⋯, uN)
and the vector c = (c1, ⋯, cN) can be visualized as an image defined
by Ju,c(x) = ∑ i = 1
N ciui(x). The images Ju,c for the three different

initializations of u and c are shown in Fig. 1(b), (c), and (d), which
exhibit very different patterns. In particular, the first initialization
shown in Fig. 1(b) is obtained by generating the membership
functions u1(x), ⋯, uN(x) and the constants c1, ⋯, cN as random
numbers. For these three different initializations of u and c, the
bias field converges to the same function up to a scalar multiple. By
normalizing the bias fields (e.g. dividing the bias field b by its
maximum value maxx{b(x)}), the three estimated bias fields are the
same, up to a negligible difference, which is shown in Fig. 1(e).
Meanwhile, the membership function u converges to the same
vector valued function, up to a negligible difference, yielding the
same segmentation result as shown in Fig. 1(f). The bias field
corrected image is shown in Fig. 1(g).

In Fig. 1(h), we plot the energy F(u, c,w) of the variables u, c, and
w computed at each iteration for 20 iterations. It is clearly seen that,
the energy F(u, c, w) decreases rapidly to the same value from three
different initial values corresponding to the three different initial-
izations. This figure also demonstrates fast convergence of the
iteration in MICO, as we can clearly see that the energy is rapidly
decreased and converge to the minimum value in less than 10
iterations. Therefore, we usually only perform 10 iterations in our
applications of MICO.

3. Some extensions

3.1. Introduction of spatial regularization in MICO

The basic MICO formulation presented above can be readily built
upon to add a regularization term on the membership functions.
Based on the MICO formulation, regularization of the membership
functions can be achieved by adding the total variations (TV) of the
membership functions in the following energy:

F u; c;wð Þ ¼ λF u; c;wð Þ þ
XN
i¼1

TV uið Þ; ð21Þ

where F is the energy defined in (8), λ N 0 is the weight of F, and TV is
the total variations of u defined by

TV uð Þ ¼
Z

Ω
∇u xð Þj jdx: ð22Þ

This energy should be minimized subject to the constraint
that 0 ≤ ui(x) ≤ 1 and ∑ i = 1

N ui(x) = 1 for every point x. The
variational formulation in (21) is referred to by TVMICO formu-
lation. The definition of this energy (21) is simple, but in the
energy minimization, it is not trivial to deal with the above point
wise constraint.

In recent years, many researchers have proposed various
numerical schemes [30] to solve the variational problems in the
context of image segmentation with a TV regularization term TV(u)
for a membership function u subject to the constraint 0 ≤ u(x) ≤ 1.
These methods are only able to segment the images into two
complementary regions, which are represented by the membership
functions u and 1-u. In general, for segmentation of N N 2 regions,
three or more membership functions u1, ⋯, uN are used to represent
N N 2 regions. In [31], Li et al. used the operator splitting method
proposed by Lions and Mercier in [32] to develop a numerical
scheme to solve the energy minimization problem with TV
regularization on the membership functions as in (21). The
minimization of the energy F with respect to the membership
functions u1, ⋯, uN in (21) can be performed by using the numerical
scheme described in [31]. The energy minimizations with respect to
the variables c and w, which are independent of the TV
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regularization term of the membership functions, remain the same
as described in Section 2.4.
3.2. Spatiotemporal regularization for 4D segmentation

The TVMICO formulation in (21) can be further extended to 4D
MICO with spatiotemporal regularization of the tissue membership
functions for segmentation of 4D data, which is a series of 3D scans of
the same subject at different time points. While the basic MICO
formulation presented in Section 2 allows for various 4D extensions
with different spatiotemporal regularization mechanisms, we only
provide a simple and natural 4D extension of the basic MICO
formulation in the following as an example.

Before we present the 4D MICO formulation, we first describe a
model of serial MR images captured from the same subject at
different time points. We assumed that all the images in a
longitudinal series are registered to the first image in the series by
using rigid registration with six degree of freedom. Therefore, all the
registered images in the series are in a common space, denoted byΩ,
which can be represented by a 4D image I(x, t) with spatial variable
a) Original image. b) Initialization 1. c) Initialization 2. d) Initialization 3.

e) Estimated bias field. f) Segmentation re-sult. g) Bias field cor-rected 
      image.
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ig. 1. Demonstration of robustness of our method to initialization. (a) Original image; (b)–(d) Visualization of three different initializations of the membership functions;
e) Estimated bias field; (f) Segmentation result; (g) Bias corrected image; (h) Curves showing the energy F in the iteration process from three different initializations shown in
b), (c), and (d).
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x ∈ Ω and temporal variable t in a time period [0, L]. The series of
images I(∙,t) can be modeled as

I x; tð Þ ¼ b x; tð Þ J x; tð Þ þ n x; tð Þ ð23Þ

where J(∙,t) is the true image, and b(∙,t) is the bias field, and n(∙,t) is
additive noise.

We assume there areN types of tissues in the image domainΩ. The
true image J(x,t) can be approximated by J(x, t) = ∑ i = 1

N ci(t)ui(x, t),
where N is the number of tissues in Ω, and ui(∙,t) is the membership
function of the i-th tissue, and the constant ci(t) is the value of the true
image J(x,t) in the i-th tissue. For convenience, we represent the
constants c1(t), ⋯, cN(t) with a column vector c(t) = (c1(t), ⋯, cN(t))T.
The membership functions u1(x, t), ⋯, uN(x, t) are also represented by
a vector-valued function u(x, t) = (u1(x, t), ⋯, uN(x, t))T.

The bias field b(∙,t) at each time point t is estimated by a linear
combination of a set of smooth basis functions g1(x), ⋯, gM(x). Using
the vector representation in Section 2, the bias field b(∙,t) at the time
point t can be expressed as

b x; tð Þ ¼ w tð ÞTG xð Þ; ð24Þ



Fig. 2. Bias correction and tissue segmentation results of our method on the data from 1.5 T (upper row) and 3 T (lower row) MR scanners. The left, middle, and right columns
show the original images, bias field corrected image, and segmentation results, respectively.
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with w(t) = (w1(t), ⋯, wM(t))T, where w1(t), ⋯, wM(t) are the time
dependent coefficients of the basis function gj(x), j = 1, ⋯, M.

The spatiotemporal regularization of the membership functions
ui(x,t) can be naturally taken into account in the following
variational formulation with a data term (image based term) and a
spatiotemporal regularization term as follows:

G u; c;wð Þ ¼ λ
Z

0;L½ �
F u �; tð Þ; c tð Þ;w tð Þð Þdt þ

XN
i¼1

TV uið Þ ð25Þ

where λ N 0 is a constant, F(u(∙,t), c(t),w(t)) is the data term defined
in (8) for the image I(∙,t) at the time point t, namely,

F u �; tð Þ; c tð Þ;w tð Þð Þ ¼
Z

Ω

XN
i¼1

I x; tð Þ−w tð ÞTG xð Þci tð Þ
��� ���2uq

i x; tð Þdx;

and TV(ui) is the spatiotemporal regularization term on the
membership function u, which can be expressed as:

TV uið Þ ¼
Z

∇ui x; tð Þj jdxdt; ð26Þ

where the gradient operator ∇ is with respect to the spatial and
temporal variables x and t. We call the above variational formulation
a 4D MICO formulation.

The minimization of the energy G is subject to the constraints on
the membership function. Therefore, we solve the following
constrained energy minimization problem:

Minimize G u; c;wð Þ
subject to 0≤ui xð Þ≤1; i ¼ 1; ⋯;N; and

XN
i¼1

ui xð Þ ¼ 1 ð27Þ

The minimization of the energy Gwith respect to c(t) and w(t) is
independent of the spatiotemporal regularization term in (25). The
optimal vectors c(t) and w(t) can be computed for each time point t
independently from the image I(∙,t) as in the energy minimization
for the basic MICO formulation described in Section 2.4. The
minimization of G with respect to the 4D membership function u
subject to the constraint in (27) can be achieved by using the
numerical scheme in [31] for variational formulations with TV
regularization. The detailed description of the numerical scheme for
solving the constrained energy minimization problem in (27) and its
modified forms will be provided in our future publication that
focuses on 4D segmentation based on the basic MICO formulation.

3.3. Modified MICO formulation with weighting coefficients for
different tissues

The basic MICO formulation in Section 2 can be modified by
introducing weighting coefficients λ1, ⋯, λN for the N tissues in the
definition of the energy function F(u, c,w) in Eq. (8). We defined the
modified energy as

F u; c;wð Þ ¼
Z

Ω

XN
i¼1

λi I xð Þ−wTG xð Þci
��� ���2uq

i xð Þdx; ð28Þ

where λi is the coefficient for the i-th tissue.
The introduction of the parameters λ1, ⋯, λN provides an option

for the users to improve the results of the basic MICO formulation in
2. For example, if the i-th tissue is over segmented by using the basic
MICO formulation in Section 2, one can use the above modified
formulation in (28) with a larger λi N 1.

4. Results and discussions

Our method has been extensively tested on synthetic and real
MRI data, including 1.5 T and 3 T MRI data. In this section, we first
show experimental results of ourmethod for some synthetic and real
MR images, including some images with severe intensity inhomo-
geneities. We also present the results of quantitative evaluation and
comparisons with some popular methods.

In our applications of MICO of 1.5 T and 3 TMR images, we use 20
polynomials of the first three orders as the basis functions g1, ⋯, gM
with M = 20. Our method with these 20 basis functions works well
for images acquired from 1.5 T and 3 TMRI scanners. For higher field
(e.g. 7 T) MRI scanners, the intensity inhomogeneities have more
complicated profiles than 1.5 T and 3 T MR images. In this situation,
more basis functions are needed so that a larger range of bias fields
can be well approximated by their linear combinations. Theoreti-
cally, any function can be well approximated by a linear combination
of a set of basis functions up to arbitrary accuracy [27], given a
sufficiently large number of basis functions. The numerical



Fig. 3. Results for images with severe intensity inhomogeneity shown in the left column. The estimated bias fields, segmentation results, and bias field corrected images are shown
in columns 2, 3, 4, respectively.
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stab + ility of the computation of the inverse matrix A−1 in (14),
with A being an M × M matrix, is an important numerical issue,
especially for a large M. Fortunately, by the matrix analysis in
Section 2.5, we have shown that the condition number of the matrix
A is bounded by a constant as in (20), which is independent of the
number of basis functions. This ensures the numerical stability of the
computation of the bias field, regardless of howmany basis functions
are used.

We have applied MICO to 1.5 T and 3 T MRI data with desirable
results. For examples, we show the bias field correction and
segmentation results of our method for a 1.5 T and a 3 T MR images
in Fig. 2. The original images, the bias field corrected images, and the
segmentation results are shown in the left, middle, and the right
columns, respectively. To demonstrate the ability of our method to
deal with severe intensity inhomogeneities, we applied MICO to the
two images in the left column in Fig. 3. The estimated bias field, the
segmentation results, and the bias field corrected images obtained by
our method are shown in the second, third, and fourth columns,
respectively. Despite the severe intensity inhomogeneities in the
ig. 4. Comparison of our method with SPM, FSL, FANTASM on synthetic images with different degrees of intensity inhomogeneities. The input images are shown in the lef
olumn, including an image with low degree of intensity inhomogeneity (in the upper row) and an image with high degree of intensity inhomogeneity (in the lower row). The
orresponding segmentation results of our method, SPM, FSL, and FANTASM are shown in the second, third, fourth, and fifth columns, respectively.
F
c
c

images, our method is able to produce desirable results of bias field
correction and tissue segmentation as shown in Fig. 3.

In the following experiment, we quantitatively evaluate and
compare the segmentation accuracy of our method and the well-
known softwares FSL, SPM, and FANTASM. These three softwares can
be downloaded from http://www.fmrib.ox.ac.uk/fsl/ (for FSL),
http://www.fil.ion.ucl.ac.uk/spm/software/ (for SPM), and http://
mipav.cit.nih.gov/ (for FANTASM), respectively. The data used in our
quantitative evaluation are downloaded from BrainWeb in [33].
BrainWeb also provides ground truth, which can be used to
quantitatively evaluate segmentation accuracy.

Note that the intensity inhomogeneities generated by BrainWeb
are linear, which are relatively easy to be handled. To examine the
performance of segmentation algorithms in a more difficult
situation, we generated simulated MR images with non-linear
intensity inhomogeneities as follows. The degree of intensity
inhomogeneity is indicated by the range of values of the bias field
in the interval [1 − α, 1 + α] with α N 0. We generated five sets of
images with α = 0.1, 0.2, 0.3, 0.4, and 0.5. For each α, we generated
t
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Fig. 5. Quantitative evaluation for the segmentation results of TVMICO (with λ =
0.01), MICO, SPM, FSL, and FANTASM for 30 images using Jarcard similarity with
ground truth.
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Fig. 6. An example of the application of 4D MICO
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six different bias fields with values in [1 − α, 1 + α] and multiplied
them with the original image downloaded from BrainWeb to obtain
six images with different intensity inhomogeneities. Then we added
noise of six different levels to these images. Thus, there are 30 images
in the five sets of images with different degrees of intensity
inhomogeneities and different levels of noise. In Fig. 4, we first
show the segmentation results of the four tested methods for two of
the 30 images, onewith the lowest degree of intensity inhomogeneity
b)

e)

to a s
(generated with α = 0.1) and the other one the highest degree of
intensity inhomogeneity (generated with α = 0.5). For the image
with lowdegree of intensity inhomogeneity, the segmentation results
of the four methods look similar by visual comparison, as shown in
the upper row in Fig. 4. The advantage of our method is particularly
noticeable for the imagewithhighdegree of intensity inhomogeneity,
as shown in the lower row in Fig. 4.

More objective and precise comparison of the segmentation
accuracy of the four segmentation methods can be performed by
evaluating the segmentation results using the Jaccard similarity (JS)
index [34], which is defined as

J S1; S2ð Þ ¼ S1∩S2j j
S1∪S2j j ð29Þ

where |∙| represents the area of a region, S1 is the region segmented
by an algorithm, and S2 is the corresponding region obtained from a
reference segmentation result or the ground truth. For synthetic data
from the BrainWeb, we have the ground truth of the segmentation of
the WM, GM, and CSF, which can be directly used as S2 in (29) to
compute the JS index. The larger the JS value, the closer of the
algorithm segmentation to the reference segmentation.

Fig. 5 shows the comparison of JS values of the four methods on
the 30 synthetic images with different degrees of intensity
inhomogeneities and different levels of noise, as described above.
Fig. 5 shows the box plot of the JS values for the GM and WM
obtained from our method (MICO and TVMICO), SPM, FSL, and
FANTASM. From the box plot of the JS values in Fig. 5, it is clearly seen
that both MICO and TVMICO have better performance than SPM, FSL,
and FANTASM in terms of segmentation accuracy and robustness.

We note that the box shown in the box plot for the basic MICO is
relatively shorter and there are no outliers in the JS values for all the
30 test images. This exhibits desirable robustness of the basic MICO.
The TVMICO has slightly better accuracy than the basic MICO, but
there are outliers in the JS values for TVMICO. The performance of
TVMICO depends on the choice of the parameter λ in (21), which
need to be tuned for some cases. In this experiment, we fixed λ =
0.01 for all the 30 test images, and we found that the results are
overall desirable except one case, which leads to the outliers in the
box plot in Fig. 5. By comparison, the basic MICO is more robust, and
the performance is more stable than TVMICO, while the latter is
slightly more accurate than the former except for most of the cases.
c)

f)

ynthetic longitudinal data with simulated atrophy.
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from 3 T MR scanners.
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In fact, for images with reasonable noise level, the difference of the
segmentation accuracy of MICO and TVMICO is not significant. We
suggest that the basic MICO be used when robustness is a priority or
the noise level in the images is not high. Especially for fully
automatic segmentation of large data sets, the robustness and
stability of performance is a major concern, and the basic MICO is
preferable to TVMICO for its robustness and stable performance.

The 4D MICO algorithm has been tested on synthetic data with
promising results. We generated a synthetic longitudinal data with
simulated atrophy by using the atrophy simulator developed in [35].
The atrophy simulator simulates the atrophy by shrinking the GM
andWM and expanding CSF in the input MR image at a specified rate
and location, and of a specified size. Based on the images obtained
from the atrophy simulator, we added different intensity inhomo-
geneities and noise to them to test the performance of our method in
the presence of intensity inhomogeneities and noise. We used this
synthetic data to test the ability of the 4D MICO to capture subtle
changes caused by the atrophy.

The upper row of Fig. 6 shows a portion of the brain in images of
three consecutive time points. This portion of the images contains
the atrophy simulated by the atrophy simulator. These images
exhibit subtle expanding of CSF and shrinking of WM and GM near
the cortex, and the same brain tissue structure in the rest of this
portion. The results of the 4DMICO, shown in the lower row of Fig. 6,
indeed agree with structural changes caused by the simulated
atrophy in these three images, while the segmented tissues in the
non-atrophy region remain almost the same in these three images.
This experiment shows the temporal consistency of our method and
the ability to capture subtle changes caused by atrophy or other
biological changes.

In this experiment, we used λ = 0.008 in the 4D MICO
formulation in (25). We have noticed that the performance of the
4DMICO formulation in (25) depends on the choice of the parameter
λ and some additional parameters in the numerical scheme for
energy minimization with respect to the membership functions.
More details about the implementation and validations of the 4D
MICO formulation in (25) and its modified formswill be presented in
our future publication as an extension of this paper.

The estimated bias field b̂ of MICO can be used to compute the
bias field corrected image I=b̂. We have evaluated the performance of
bias field correction of MICO and compared it with two well-known
bias field correction methods, namely, N3 method proposed in [17]
and entropy minimization method in [21]. The performance of bias
field correction can be evaluated by quantifying the intensity
inhomogeneities of the bias field corrected images using the
coefficient of variations (CV) and coefficient of joint variation
(CJV). For each tissue T (WM or GM), the CV is defined by

CV Tð Þ ¼ σ Tð Þ
μ Tð Þ ;

where σ(T) and μ(T) are the standard deviation and the mean of the
intensities in the tissue T. The CJV is defined as

CJV ¼ σ WMð Þ þ σ GMð Þ
μ WMð Þ−μ GMð Þj j :

The performance of bias field correction is evaluated by the CV
and CJV of the bias field corrected images, with smaller CV and CJV
values indicating better bias field correction results.

We applied our method and the N3 and entropy minimization
methods implemented in the MIPAV software to 15 images
acquired from 3 Tesla MRI scanners. The MIPAV software is publicly
available in http://mipav.cit.nih.gov/. The CV and CJV values of the
three tested methods for the 15 images are plotted in Fig. 7, which
shows better performance of our method than N3 and entropy
minimization methods.

Note that, in the standard definition of CV and CJV in the
literature on bias field correction [5], the GM and WM are the
ground truth. Since we do not have the ground truth of GM and
WM for the real MR images, we used an approximate of the ground
truth of GM/WM by the intersection of the segmented GM/WM
obtained by applying K-means algorithm to the bias corrected
images by the three compared bias field correction methods: our
method and the well-known N3 method [17] and the entropy
minimization method [21].

As mentioned earlier, we only used 20 polynomials as the basis
functions in the estimation of the bias field. It can be expected
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that the capability of the bias field correction of MICO can be
enhanced by using more and different types of basis functions,
such as the B-spline functions, which would increase the range of
bias fields represented by the linear combinations of the basis
functions. This would enable the application of MICO to ultra high
field MRI (e.g. 7 Tesla) and other medical images with more severe
intensity inhomogeneities.
5. Conclusion

We have proposed a principled method, called multiplicative
intrinsic component optimization (MICO), for bias field estimation
and segmentation of MR images in a new energy minimization
formulation. By calculus of matrix and vector, we have derived an
efficient energy minimization scheme for the computation of the
bias field, and usedmatrix analysis to verify the numerical stability of
the computation for the optimization of the bias field. The
robustness, accuracy, and efficiency of our method are demonstrated
by the evaluation and comparison with other methods on synthetic
and real MR data. Our method has been successfully applied to 1.5 T
and 3 T MR images with desirable results. Experimental results have
shown desirable advantages of our method in terms of segmentation
accuracy and robustness, compared with popular softwares. In
addition, we have shown that the basic MICO formulation can be
naturally extended to 3D/4D segmentation with spatial/spatiotem-
poral regularization with promising result.
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